热处理对Mg-Gd-Y-Zn-Ti合金微观组织和性能的影响
Effects of Heat Treatment on Microstructure and Properties of Mg-Gd-Y-Zn-Ti Alloy
- 2024年44卷第3期 页码:392-397
纸质出版日期: 2024-03-20
DOI: 10.15980/j.tzzz.2024.03.019
扫 描 看 全 文

浏览全部资源
扫码关注微信
纸质出版日期: 2024-03-20 ,
扫 描 看 全 文
郅玄乐,丁志兵,张帅,等. 热处理对Mg-Gd-Y-Zn-Ti合金微观组织和性能的影响[J]. 特种铸造及有色合金,2024,44(3):392-397.
ZHI X L, DING Z B, ZHANG S, et al.Effects of heat treatment on microstructure and properties of Mg-Gd-Y-Zn-Ti alloy[J].Special Casting & Nonferrous Alloys,2024,44(3):392-397.
以铸态、固溶态和时效态 Mg-Gd-Y-Zn-Ti稀土镁合金为对象,采用X射线衍射仪(XRD)、扫描电镜(SEM)以及电子拉伸试验机分析了热处理对 Mg-12Gd-
x
Y-1Zn-0.6Ti(质量分数,%)合金(
x
=0,0.4,0.8,1.2,%)的微观组织、微区成分、物相组成以及力学性能的影响。结果表明,铸态Mg-12Gd-
x
Y-1Zn-0.6Ti合金中存在LPSO相,且LPSO相为Mg
12
Gd
5
(Zn,Y)。添加0.8%的Y的合金力学性能最优,其抗拉强度为222 MPa,屈服强度为149 MPa,伸长率为3.76%。固溶处理后力学性能得到了一定的提升,抗拉强度达到了272 MPa,屈服强度达到了188 MPa,伸长率达到了5.4%。加Y合金的峰时效响应强烈,峰时效态Mg-12Gd-1Zn-0.6Ti-0.8Y合金的力学性能最佳,其抗拉强度达到了388 MPa,屈服强度为267 MPa,伸长率为6.44%。
Effects of heat treatment on microstructure, micro-composition, phase composition and mechanical properties of Mg-12Gd-
x
Y-1Zn-0.6Ti alloy (
x
=0,0.4,0.8,1.2,%) were analyzed at as-cast, solid solution and aged treatment by X-ray diffractometer (XRD), scanning electron microscopy (SEM) with energy spectrum and electron tensile testing machine.The results indicate that LPSO phase is present in as-cast Mg-12Gd-
x
Y-1Zn-0.6Ti alloy,which is composed of Mg
12
Gd
5
(Zn,Y). The mechanical properties of alloy with 0.8% Y is desirable,where the tensile strength, yield strength and elongation reach 222 MPa, 149 MPa, and 3.76%, respectively.The mechanical properties of alloy after solution treatment are improved to a certain extent,where the tensile strength, yield strength and elongation reach 272 MPa, 188 MPa, and 5.4%, respectively.The peak aging response of alloy with Y addition is strong, and the mechanical properties of peak-aged Mg-12Gd-0.8Y-1Zn-0.6Ti are desirable,where the tensile strength reach yield strength and elongation are 388 MPa, 267 MPa and 6.44%, respectively.
Mg-Gd-Y-Zn-Ti合金稀土镁合金热处理力学性能
Mg-Gd-Y-Zn-Ti AlloyRare Earth Magnesium AlloysHeat TreatmentMechanical Properties
王丽娟, 牛瑞利. Zn添加对挤压态Mg-Al-Ca-Mn合金微观组织和力学性能的影响[J]. 精密成形工程, 2021, 13(4): 139-143.
尚会会, 曹富荣, 项超. 镁合金超塑性研究进展[J]. 精密成形工程, 2020, 12(5): 111-116.
LI B G, WANG Y S, JIANG J, et al. Microstructure and mechanical properties of extruded Mg-Y-Zn (Ni) alloys [J]. Journal of Alloys and Compounds, 2021, 881: 160 577.
YU Z J, XU C, MENG J, et al. Effects of extrusion ratio and temperature on the mechanical properties and microstructure of as-extruded Mg-Gd-Y-(Nd/Zn)-Zr alloys[J]. Materials Science and Engineering, 2019, A762: 138 080.
ZHANG Z Q, LIU X, HU W Y, et al. Microstructures, mechanical properties and corrosion behaviors of Mg-Y-Zn-Zr alloys with specific Y/Zn mole ratios[J]. Journal of Alloys and Compounds, 2015,624:116-125.
LI C Q, XU D K, ZENG Z R, et al. Effect of volume fraction of LPSO phases on corrosion and mechanical properties of MgZn-Y alloys[J].Materials and Design, 2017,121 :430-441.
DING Z B, ZHANG S, ZHAO Y H, et al. Effect of Al addition on microstructure and mechanical properties of Mg-Gd-Zn alloys [J]. Transactions of Nonferrous Metals Society of China, 2022, 32(3): 824-837.
LIU W, ZHANG J S, XU C X, et al. High-performance extruded Mg89Y4Zn2Li5 alloy with deformed LPSO structures plus fine dynamical recrystallized grains[J]. Materials and Design,2016,110:1-9.
LIU Y, LIU X Q, LIU Z L,et al. The microstructure and mechanical properties of as-cast Mg-4Y/Nd-2Zn alloys[J].Materials Science and Technology,2018,34(9): 1 142-1 147.
DING Z, LU R, ZHAO Y, et al. The microstructure and mechanical properties of as-cast Mg-10Gd-3Y-xZn-0.6Zr (x=0,0.5,1 and 2) alloys [J]. Materials Research-Ibero-americal Journal of Matericals, 2018, 21(5): 20 170 992.
BIAN L P, WANG L P, ZHOU Y Y, et al. Effects of different amounts of AlCa2 addition on the microstructure and mechanical properties of Mg-Gd-Zn alloy [J]. Materials Science and Engineering, 2017, A698: 12-17.
FANG C F, LIU G X, LIU X T, et al. Significant texture weakening of Mg-8Gd-5Y-2Zn alloy by Al addition [J]. Materials Science and Engineering, 2017, A701: 314-318.
HONMA T, OHKUBO T, KAMADO S, et al. Effect of Zn additions on the age hardening of Mg-2.0Gd-1.2Y-0.2Zr alloys [J]. Acta Materialia, 2007, 55: 4 137-4 150.
WANG J F, WANG K, HOU F, et al. Enhanced strength and ductility of Mg-RE-Zn alloy simultaneously by trace Ag addition [J]. Materials Science and Engineering, 2018, A728: 10-19.
SHAO X H, YANG Z Q, MA X L. Strengthening and toughening mechanisms in Mg-Zn-Y alloy with a long period stacking ordered structure [J]. Acta Materialia, 2010, 58: 4 760-4 771.
YASUMASA C, MAMORU M,SHIGEHIRO H,et al.Novelequilibrium two phase Mg alloy with the long period ordered structure [J] . Scr. Mater., 2004 , 51:711-714.
LIAO H, KIM J, LEE T, et al. Effect of heat treatment on LPSO morphology and mechanical properties of Mg-Zn-Y-Gd alloys[ J] . Journal of Magnesium and Alloys,2020,8(4) : 1 120-1 127.
丁科迪. 热处理工艺对Mg-Gd-Y(-Zn)-Zr合金组织及力学性能的影响[D]. 哈尔滨:哈尔滨工业大学,2017.
SANDLÖBES S, FRIÁK M, ZAEFFERER S, et al. The relation between ductility and stacking fault energies in Mg and Mg-Y alloys[J].Acta Materialia,2012,37:357-361.
LU R P, WANG J F, CHEN Y L, et al. Effects of heat treatment on the morphology of long-period stacking ordered phase, the corresponding damping capacities and mechanical properties of Mg-Zn-Y alloys[J]. Journal of Alloys and Compounds,2015,639: 541-546.
相关作者
相关机构
京公网安备11010802024621